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INTRODUCTION 

Transient convective heat transfer inside ducts with timewise 
variation of wall heat flux is of interest in the control of heat 
exchanger equipment and most of the work available in the 
literature deals with the solution of direct problems [1-3, 6]. 
However, there are applications in which boundary con- 
ditions or thermophysical properties for the problem are 
unknown, but transient temperature readings taken at a 
specific location are available as a function of time. Then the 
problem of estimating, say, the unknown wall heat flux, 
by utilizing the available experimental data, is an inverse 
problem. 

Available work in the inverse heat convection problems is 
still very limited [4, 5]. The purpose of this work is twofold : 
first to demonstrate the feasibility of the conjugate gradient 
method with an adjoint equation for solving the inverse 
turbulent forced convection problem of estimating the time- 
wise varying wall heat flux by using simulated measured data, 
with no prior information on the functional form of the 
unknown heat flux. Second, to examine the effects of sensor 
location, magnitude of the measurement error, functional 
form of the timewise variation of heat flux on the accuracy 
of estimations. 

DIRECT PROBLEM 

We consider hydrodynamically developed, thermally 
developing transient heat transfer for an incompressible, tur- 
bulent, constant property flow inside a parallel-plate duct 
subjected to timewise varying wall heat flux at both boun- 
daries. Axial conduction, viscous dissipation, free convection 
and wall conjugation effects are neglected. Because of sym- 
metry, only half the region is considered. The mathematical 
formulation of this problem in the dimensionless form is 
given by 

~O(x,y, 0 00(x,y, z) + U(y) 
dx dr 

( O®(x,y,z)) 

(la) 

dO 00 
d~=a(z)  at y = l ;  ~y-y=0 at y = 0  

(lb,c) 

0 = 1  at x = O ;  O = l  at r = O .  (ld,e) 
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Here, the fully developed turbulent velocity distribution, 
U(y), and the total diffusivity, et, are determined by a tur- 
bulent model given in the Appendix of ref. [6]. 

THE INVERSE PROBLEM 

The inverse problem considered here is concerned with the 
estimation of the unknown boundary heat flux Q(r) from 
the knowledge of transient temperature readings taken at a 
specified location as a function of time. To solve such an 
inverse problem we are concerned with the minimization of 
the residual functional J(Q) defined as 

J(Q) = f i ' (®-z)z  dr, (2) 

where ® is the temperature computed from the solutions of 
direct problem defined by equations (1) by using the estimate 
for Q; and Z is the measured temperature at the sensor 
location (x = x*, y = y*). Thus, the inverse problem is recast 
into an optimum control problem, i.e. to find the wall heat 
flux (Q), which minimizes the residual functional, J. 

To solve this optimization problem by using the conjugate 
gradient method of minimization, we need to construct : (i) 
the sensitivity problem, (ii) the adjoint problem, and (iii) the 
gradient equation, which are then used in the minimization 
procedure as described below. 

THE SENSITIVITY PROBLEM 

When the wall heat flux Q(T) undergoes an increment 
change AQ(T), the temperature ®(x, y, r) also changes by the 
amounts AO(x,y,r). To construct the sensitivity problem 
satisfying the functions A® and AQ, we replace ® and Q in 
the direct problem (la-e) by ®+A® and Q+AQ, respec- 
tively, and then subtract from the resulting equations the 
original direct problem. The following sensitivity problem is 
obtained : 
d A®(x,y, 3) . . . 0AO(x,y, z) 

dA® 
= AQ(r) dy at 

0 O (3a) A°(x'Y")l y J 

d a d = 0  y = l ;  ~ y  at y = 0  

(3b,c) 
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NOMENCLATURE 

equivalent diameter 2* 
dimensional half channel height v 
residual functional defined by equation (2) 
gradient of the function J 
thermal conductivity 
kth iteration 
= L/(Re Pr/9o/16) ; dimensionless channel 

length 
dimensional channel length 
number of sensors 
direction of descent defined by equation 
( i l )  
Prandtl number 
dimensional heat flux 
= o!(ToK/ff) ; dimensionless heat flux ;.' 
= Uml)jv ; Reynolds number 

dimensional time ,$ 
dimensional computer temperature 5 
dimensional inlet temperature ch 
mean flow velocity ~:, 
dimensional velocity p 
= U/Um ; dimensionless velocity 
= (16X//~e)/Re Pr ; dimensionless axial 

distance along the channel 
dimensional axial distance along the 
channel 
= g*/(Re Pr L3~/16) : dimensionless axial 

location of sensor 

dimensional axial location of sensor 
= P/if; dimensionless transverse 

coordinate 
dimensional transverse coordinate 

v* = p*/kV; dimensionless transverse location 
of sensor 

f*  dimensional transverse location of sensor 
Z(x ,y , r )  dimensionless measured temperature. 

Greek symbols 
:~ thermal diffusivity 
fl step size in going from k to k + 1 iteration 

in equation (10) 
conjugate coefficient, defined by equations 
(11) and (12) 
Dirac delta function 
convergence criteria 
eddy diffusivity for heat 
total diffusivity 
fluid density 

2(x,y, r) adjoint function satisfying the adjoint 
problem defined by equations (6) 

r = ~t,lh 2 ; dimensionless time 
®(x, v r) = T/T0; dimensionless computed 

temperature 
a standard deviation of temperature 
~o random number. 

A ® = 0  at x = 0 :  A ® = 0  at r = 0 .  (3d,e) 

THE ADJOINT PROBLEM 

To derive the adjoint equations we multiply equation (la) 
by the adjoint function 2(x,y,r) ,  integrate the resulting 
expression over the space and time domains and then add 
the resulting expression to equation (2) to yield 

1, A, > t  J =  z - -  8t 
! 

Jo 

2z U(?xldydxdr" 14) 

To obtain the variation of  J, O is perturbed by A®, and 
then the equation (4) is subtracted from it 

A J  = 2 ( 0  Z )  A O  
) ) 

x 6 ( x -  x*) 3 0 : -  y*) dy dx dr 

) i I • - 

U ~ x - l d v .  . dx dr. (5) 

The second integral term on the right-hand side is sim- 
plified by integration by parts and applying the initial and 
boundary conditions from sensitivity problem (3). After 
some manipulation and rearrangement we find the following 
adjoint problem for the determination of the adjoint function 
2(x, y, r) 

(? ~?). 
3). '?) '+ v-(e,  ,~i,,) + 2 ( 0 -  Z) ?'~ + U,?v <)'\ <Vl 

× 3 ( x - x * ) a ( y - y * ) - 0  (6a) 

~). 32 
- - = 0  at y =  I: _ _ = 0  at y - 0  (6b,c) 

) . = 0  at x =  L: ) ~ - 0  at r - Z r  (6d,e) 

and the remaining term gives the AJ as 

I rt I L A J  = - 2(.V, I,r)e,(1)dxdz. 
) ) 

(7) 

THE GRADIENT EQUATION 

The gradient J '  of  the function J is defined by [7] 

A J =  f~'J'(r) AOdz. (8) 
du 

Comparing equations (7) and (8), we conclude that the 
gradient equation J '  is given by 

f' J '(r) = ).(x, 1, r)e,(l) dx. (9) 
i 

MINIMIZATION PROCEDURE 

The iterative procedure for determination of the wall heat 
flux is computed from [g] 

0k+t = O k_flkP~ (10) 
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where pk is the direction of  descent, defined as the com- 
bination of gradient at step k and the descent direction at 
step k -  1, in the form 

p~ = j,k+Tkpk 1. (11) 

Different definitions of  the conjugate coefficient 7 can be 
found in the standard texts of  mathematics [7], here we 
choose the form 

with ?0 = 0. (12) 

The coefficient ilk, which determines the step size in going 
from k to k + 1, is determined by minimizing J in equation 
(2) with respect to ilk, i.e. 

= nf~nfi~[O(Q~-flkP*)-Z]~d~. (13) 

This expression is linearized by Taylor expansion and then 
differentiated with respect to f t .  The following equation 
results for fl~ 

If there were no measurement errors, the following stop- 
ping criteria could be used : 

J(Qk+ ~ ) < a small number. (15) 

However, in practical applications, measurement errors 
are always present; therefore the discrepancy principle [7, 8] 
should be used to establish the stopping criterion; that is 
assuming constant standard deviation of  the measurement 
error ~r, we have 

i~o "2 d'r = ~ .  (16a) 

Then the stopping criterion is taken as 

j(Qk+,) < ~:. (16b) 

SOLUTION ALGORITHM 

The iterative computation algorithm for the solution of  
this inverse problem can be summarized as follows : suppose 
an initial guess is available for Qk(z) at iteration k. 

Step 1. Solve the Direct problem given by equations (1), 
to obtain ®(x, y, ~) ; Step 2. Continue if the stopping criterion 
given by equations (16) is not satisfied; Step 3. Knowing 
O(x ,y ,Q  and measured temperature Z(x,y,z),  solve the 
adjoint problem (6) and obtain adjoint variable 2(x, y, z); 
Step 4. Knowing 2(x, l, z), compute J'(z) from equation (9) ; 
Step 5. Knowing the gradient equation J'(z), compute ~k 
from equation (12) and the direction of  descent P* from 
equation (11); Step 6. Knowing /~, solve the sensitivity 
problem (3) by setting AQ = P~ and obtain AO(/~) ; Step 7. 
Knowing A®(pk), compute step size f f  from equation 04)  ; 
Step 8. Knowing step size ilk, compute new wall heat flux 
Qk÷, from equation (10) ; Step 9. Go to step 1. 

RESULTS AND DISCUSSION 

To evaluate the accuracy of  the inverse analysis for esti- 
mating Q(z), the simulated temperature data, Z, are gen- 
erated by adding random errors oct to the exact tempera- 

tures, O, computed from the direct problem. Then, Z is 
expressed as 

Z = O +¢oa, (17) 

where a is the standard deviation of  measurement errors 
which is assumed to be the same for all measurements, as 
shown in equation (16), and co is the normally distributed 
random number generated by the IMSL subroutine 
D R N N O R  [9]. For  normally distributed random numbers, 
there is a 99% probability of  the value of  co lying in the range 

-2 .576 < co < 2.576. (18) 

In present study, we investigate two different timewise 
variations of wall heat flux, Q(z): 

80 0~<z~<0.3 
Case(A) Q ( z ) =  50 0 . 3 < z ~ < 0 . 6  (19) 

50+ 100z 0 ~< r ~< 0.3 

Case(B) Q(z) = (50+100(0 .6 -z )  0.3 < r ~< 0.6 

(20) 

Effect of the sensor location 
Figure 1 (a) shows the effects of sensor location on the 

accuracy of  estimations for a standard deviation of 
a = 0.005, which corresponded to a 1.25% measurement 
error for the case of Re = 105 and Pr = 1. The three different 
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Fig. I. (a) Effect of  the transverse location, y*, of  the sensor 
on the accuracy of estimations. (b) Effect of  the axial 

location, 2", of the sensor on the accuracy of estimations. 



2618 Technical Note 

90.0 

~ '  80.0 

70.0 

.~ 60.0 

50.0 

40.0 

0.0 

' e - 'xact  

. . . . . . . . . .  ~=0.00g 
. . . . . . . . .  ~=0.01 

. . . . . . . . . .  ~ = 0 . 0 2  

. . . . . . . . .  ¢r=0.04 

i , , i i . . . .  i , ,  i , i i , i i i , , , i i i , , 

0.1 0.2 0.3 0.4 0.5 0.6 

(2a) 

90.0 , , , • , . . . . . .  

80.0 ~ A ~ , ~  ~* * ' 

70.0 ,~, 

60.0 .~ ~ 

50.0, 
~'*=5D, y*=0.9 

g ~  . . . .  , . . . .  , i . . . .  i . . . .  i . . . .  

40"6 0.1 0.2 0.3 0.4 0.5 0.6 

(2b) 

Fig. 2. (a) Effect of  the measurement  errors (standard devi- 
ation a) on the accuracy of  estimations for case A. (b) Effect 
of  the measurement  errors (standard deviation ~r) on the 

accuracy of estimations for case B. 

axial sensor locations, in dimensional form, include 
,re* = 5/~e, 7/)e, 9/~o with/~e = 4 in ; and four different trans- 
verse sensor locations are taken as 9" = 1, 0.9, 0.8, and 0.7 
in for a duct having a half channel height of  h-= I in (i.e. 
/~  = 4 in). The dimensionless location y* = 1 would cor- 
respond to a sensor at the wall. The accuracy of the esti- 
mation decreased with decreasing y* (i.e. as the distance 
between the sensor junction and the wall increased). The 
sensor location y* < 0.7 corresponds to the region outside 
the thermal boundary layer ; as a result temperature measure- 
ments taken in such a region could not be used for inverse 
analysis. 

Figure 1 (b) shows the effect of  axial location of the sensor 
on the accuracy of  the estimation. In this figure we examine 

three axial locations (.¢* = 5/)e, 7/)~, and 9/9o) with the trans- 
verse position taken as y* = 0.9 and the standard deviation 

= 0.01 (which corresponds to 2.5% measurement  error). 
Clearly, increasing the axial location ,9* of  the sensor 
decreases the accuracy of  the estimation, because the sensor 
location coincides with the fully developed region. 

Effect oj  measurement error 
Figure 2(a) illustrates the estimation made by using stan- 

dard deviation of  the measurement  error taken as cr = 0.005. 
0.01, 0.02 and 0.04 (corresponding to 1.25, 2.5, 5 and 10% 
error, respectively) for a sensor located at :~*= 5/)o, 
y * =  0.9. As expected, increasing measurement  error 
decreases the accuracy of  estimation. 

E/]ect ojfunctional Jbrm of the wall heat flux 
Figure 2(a, b) shows the accuracy of estimation for two 

different functional forms of  the applied wall heat flux, Q(T), 
for the sensor location of :~* = 5/7c, y* = 0.9 and the stan- 
dard deviation of measurement  error a = 0.01, 0.02 and 0.04. 
It appears that with the present method of  analysis, esti- 
mation can be made up to about  10% measurement  error. 
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